environment
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
-
Brazil is home to the largest tracts of tropical vegetation in the world, harbouring high levels of biodiversity and carbon. Several biomass maps have been produced for Brazil, using different approaches and methods, and for different purposes. These maps have been used to estimate historic, recent, and future carbon emissions from land use change (LUC). It can be difficult to determine which map to use for what purpose. The implications of using an unsuitable map can be significant, since the maps have large differences, both in terms of total carbon storage and its spatial distribution. This paper presents comparisons of Brazil's new ‘official’ carbon map; that is, the map used in the third national communication to the UNFCCC in 2016, with the former official map, and four carbon maps from the scientific literature. General strengths and weaknesses of the different maps are identified, including their suitability for different types of studies. No carbon map was found suitable for studies concerned with existing land use/cover (LULC) and LUC outside of existing forests, partly because they do not represent the current LULC sufficiently well, and partly because they generally overestimate carbon values for agricultural land. A new map of aboveground carbon is presented, which was created based on data from existing maps and an up‐to‐date LULC map. This new map reflects current LULC, has high accuracy and resolution (50 m), and a national coverage. It can be a useful alternative for scientific studies and policy initiatives concerned with existing LULC and LUC outside of existing forests, especially at local scales when high resolution is necessary, and/or outside the Amazon biome. We identify five ongoing climate policy initiatives in Brazil that can benefit from using this map.
-
This dataset was produced using Landsat 8 Operational Land Imager and Landsat 7 Enhanced Thematic Mapper Plus surface reflectance data spanning 2013–2018 and Spectral Mixture Analysis for the identification of patterns of forest loss for each year. High-resolution Planet Dove (3m) and RapidEye (5m) imagery were used to validate the forest loss map. Overall Accuracy obtained for the forest loss map was 96%. Publication: https://doi.org/10.1088/1748-9326/ab57c3 Google Earth Engine code: https://code.earthengine.google.com/024b42f8eb3ab0c5fa8e0ad8fba86f36 For more information on SERVIR, visit http://www.servirglobal.net
-
Project Foresight was launched, in early 2019, as a continuous effort to develop machine-learning based deforestation and forest fire risk assessment for tropical forests, using increasing higher resolution satellite data and official country data on anthropogenic activity. Version 1.0 included maps of the Peruvian and Colombian Amazon using 18 years of official deforestation data and the open source release of Maxent, as the machine-learning algorithm. Newer versions have been developed using mutli-model ensembles in R and Google Earth Engine.
-
Área desmatada à partir de 2008 discretizadas por ano e recortadas pelos limites do bioma Amazônia(*). O mapeamento utiliza imagens do satélite Landsat ou similares, para registrar e quantificar as áreas desmatadas maiores que 6,25 hectares. O PRODES considera como desmatamento a supressão da vegetação nativa, independentemente da futura utilização destas áreas. Os limites dos biomas brasileiros foram alterados conforme publicação do IBGE de 30/10/2019. Este conjunto de dados foi ajustado para o novo recorte. https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/25798-ibge-lanca-mapa-inedito-de-biomas-e-sistema-costeiro-marinho (*) Consulte os metadados de "Limites do Bioma Amazônia" para informações sobre os limites do bioma que estamos usando nesta operação: http://terrabrasilis.dpi.inpe.br/geonetwork/srv/eng/catalog.search#/metadata/481e439e-b0fa-4cb0-890b-11941264db69 Descrição dos atributos do dado composto por: nome do atributo, tipo do dado e descrição --------------------------------------------------------------------------------------------------------------------------- uuid - uuid - identificador único universal de cada feição uid - número inteiro - identificador para rastreabilidade da feição na origem/produção do dado state - texto - estado/unidade da federação path_row - texto - código da cena formado por linha/coluna da grade de passagem do satélite Landsat main_class - texto - nome da classe principal atribuída à feição class_name - texto - nome da classe específica atribuída à feição def_cloud - número - Ano que indica desde quando esta área está coberta por nuvens. Fazendo a diferença do ano corrente onde se detectou o desmatamento e def_cloud, temos o número de anos coberto por nuvens. julian_day - número - dia juliano image_date - texto - data da cena usada para obter a feição year - número - ano do desmatamento, usado para facilitar as consultas ao banco de dados area_km - número - área calculada para a feição em km² scene_id - número - identificador da cena no banco de dados, usado para consultas publish_year - data - usado para permitir a publicação do dado no GeoServer com dimensão temporal source - texto - origem do polígono (amazonia, cerrado, caatinga, mata_atlantica, pampa, pantanal), caso o polígono tenha sido incorporado de outro projeto, por exemplo, devido à alteração do mapa de biomas ou ainda às zonas da amazônia legal no cerrado e pantanal satellite - texto - nome do satélite. Em geral será o landsat mas em alguns casos, outro satélites podem ser utilizados sensor - texto - nome do sensor que obteve a imagem geom - feição composta por um ou mais polígonos - geometria obtida por interpretação visual de imagem de satélite A lista de atributos é padronizada com o dado de desmatamento, classe principal do PRODES. Para as demais classe o preenchimento ocorre apenas quando aplicável.