From 1 - 3 / 3
  • Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage.

  • Categories  

    The Sustainable Wetlands Adaptation and Mitigation Program (SWAMP - https://www2.cifor.org/swamp) provides this global data set categorizing 10 types of wetlands. The Amazonian Intterfluvial region in Brazil contains the largest wetland area in the world. For a full documentation and downloading see: https://www2.cifor.org/global-wetlands/

  • Categories  

    Avisos de área de degradação e desmatamento à partir de Agosto de 2016. O mapeamento utiliza imagens do satélite Landsat ou similares, para registrar e quantificar as áreas de avisos produzidas no projeto DETER. CLASSES DE DESMATAMENTO > Desmatamento: é a remoção total da cobertura florestal, independentemente do uso destinado para a área desmatada. O processo do desmatamento pode se dar por corte raso, quando a cobertura florestal é abruptamente removida em uma única intervenção, ou pode ser o resultado de eventos de degradação recursivos que levam ao colapso completo da estrutura florestal da vegetação. > Desmatamento com vegetação: são áreas em que há evidência de desmatamento, mas a área desmatada se encontra com sinais de uma cobertura vegetal. São casos em que há um lapso de tempo entre a ocorrência do corte raso e a sua detecção, ocasionado pela cobertura de nuvens entre um evento e outro, ou o resultado final da degradação recursiva. > Mineração: desmatamento causado por atividade de extração mineral. Predomina nesta classe atividades de garimpo artesanal. CLASSE DE DEGRADAÇÃO > Cicatriz de incêndio florestal: é caracterizada pela presença de áreas atingidas por fogo, podendo ou não haver vegetação arbórea. > Degradação: é caracterizado pela perda de dossel florestal e consequente exposição do solo, onde há vegetação geralmente indivíduos arbóreos em estágios iniciais e intermediário inicial de sucessão. CLASSES DE EXPLORAÇÃO MADEIREIRA > Corte seletivo tipo 1: é considerado uma exploração convencional, onde os indivíduos de interesse comercial são removidos sem planejamento prévio, denotado pela forma desordenada de estradas e ramais no interior da floresta e com a presença de pátios de estocagem com dimensões irregulares e dispostos de forma aleatória. > Corte seletivo tipo 2: é considerado uma exploração baseada em um plano de manejo, em que percebe-se o planejamento prévio evidenciado pelo padrão regular entre as estradas e pátios de estocagem no interior da floresta. Nome das colunas e significado. --------------------------------------------------------------------------------------------------------------------------- gid: código de identificação seguido de digito verificador que indica: ("_curr" tabela corrente e "_hist" tabela de histórico) classname: Nome das classes atribuídas aos avisos, podendo ser: para degradação: ('CICATRIZ_DE_QUEIMADA', 'CS_DESORDENADO', 'CS_GEOMETRICO', 'DEGRADACAO') e para desmatamento ('DESMATAMENTO_CR', 'DESMATAMENTO_VEG', 'MINERACAO'); quadrant: Atualmente fora de uso para as imagens CBERS. No passado foi utilizada como parte da informação das imagens AWFI; path_row: Path e Row (orbita ponto) das imagens usadas na identificação do aviso; view_date: Data das imagens usadas na identificação do aviso; sensor: Nome do sensor embarcado no satélite, usado na obtenção da imagem; satellite: Nome do satélite que obteve a imagem; areatotkm: Área calculada antes da fragmentação por intersecção. Não deve ser somada. Usada apenas para finalidade de filtro pela área original do aviso (disponível apenas para usuários cadastrados); areauckm: Área do aviso ou porção dele que intercepta uma unidade de conservação; uc: Nome da unidade de conservação interceptada pelo aviso; areamunkm: Área do aviso ou porção dele que intercepta um município. Use esta coluna em operações de soma de área; municipality: Nome do município interceptado pelo aviso ou porção dele; geocod: Código do município proveniente do dado do IBGE; uf: Nome da Unidade da Federação na qual o aviso ou porção dele está localizado; publish_month: Indicador temporal mensal. Usada apenas para fins de configuração da dimensão temporal no GeoServer; Nota sobre o SHAPEFILE: Ao exportar para shapefile os nomes das colunas sempre são reduzidos para dez (10) caracteres. Exemplo: a coluna "municipality" será renomeada para "municipali".